STABLE THEORIES

BY

S. SHELAH*

ABSTRACT

We study $K_T(\lambda) = \sup \{ |S(A)| : |A| \le \lambda \}$ and extend some results for totally transcendental theroies to the case of stable theories. We then investigate categoricity of elementary and pseudo-elementary classes.

0. Introduction In this article we shall generalize Morley's theorems in [2] to more general languages.

In Section 1 we define our notations.

In Theorems 2.1, 2.2. we in essence prove the following theorem: every first-order theory T of arbitrary infinite cardinality satisfies one of the possibilities:

- 1) for all χ , $|A| = \chi \Rightarrow |S(A)| \le \chi + 2^{|T|}$, (where S(A) is the set of complete consistent types over a subset A of a model of T).
- 2) for all χ , $|A| = \chi \Rightarrow |S(A)| \le \chi^{|T|}$, and there exists A such that $|A| = \chi$, $|S(A)| \ge \chi^{\aleph_0}$.
 - 3) for all χ there exists A, such that $|A| = \chi$, |S(A)| > |A|.

Theories which satisfy 1 or 2 are called *stable* and are similar in some respects to totally transcendental theories. In the rest of Section 2 we define a generalization of Morley's *rank of transcendence*, and prove some theorems about it. Theorems whose proofs are similar to the proofs of the analogous theorems in Morley [2], are not proven here, and instead the number of the analogous theorem in Morley [2] is mentioned.

In Section 3, theorems about the existence of sets of *indiscernibles* and *prime* models on sets are proved.

Received April 25, 1969

^{*} This paper is a part of the author's doctoral dissertation written at the Hebrew University of Jerusalem, under the kind guidance of Profeossr M. Rabin.

In Section 4, a two-cardinal Skolem-Löwenhiem theorem is given without proof, and is followed by some theorems about *categorical* elementary and pseudo-elementary classes.

Among them appear:

THEOREM. If T is categorical in λ , $\lambda > |T| + \aleph_0$, $\lambda \neq \inf\{\mu: \mu^{\aleph_0} > \mu + |T|\}$ then T is categorical in every cardinal $\geq \lambda$, and in some cardinal $< \mu(|T|) < \mathfrak{I}((2^{|T|})^+)$.

THEOREM. If the class of reducts of models of T to the language L is categorical in λ , $\lambda > |T|$, $\beth_{\gamma} > |T|$ and the ordinal γ is divided by $(2^{|T|})^+$, then the class of reducts of models of T to the language L is categorical in \beth_{γ} .

Some of the results of this article appear in my notices [8], [7].

After proving the theorems in this article, an unpublished article of J. P. Ressayre [5] came to my attention. It deals with categorical theories and includes results previously obtained by F. Rowbottom. Among the results in Ressayre's article are a weaker version of Theorems 2.1 and 2.2, a partial version of 3.5, and a somewhat weaker version of 4.6.

- 1. Notations. M will denote a model, |M| is the set of its elements, |A| is the cardinality of A, and ||M|| is the cardinality of the model M. We shall write $a \in M$ instead $a \in |M|$. α , β , γ , i, j, k, l, will denote ordinale, δ a limit ordinal and n, m natural numbers.
- λ , χ , μ will denote infinite cardinals. λ^+ is the first cardinal greater than λ . $\beth(\chi,\alpha)$ is defined by induction: $\beth(\chi,0)=\chi$, $\beth(\chi,\alpha+1)=2^{\beth(\chi,\alpha)}$, and $\beth(\chi,\delta)=\bigcup_{\alpha<\delta} \beth(\chi,\alpha)$; $\beth(\alpha)=\beth_{\alpha}=\beth(\aleph_0,\alpha)$. If $\chi=\aleph_{\alpha}$ then $\aleph(\chi,\beta)=\alpha_{\alpha+\beta}$, where $\aleph_{\alpha}=\omega_{\alpha}$ is the α 'th infinite cardinal.

T will denote a fixed first-order theory with equality. If $\psi(x)$ is a formula in the language of T with one variable., $\psi(M)$ is the set of elements satisfying ψ . $M \models \psi[a]$ if $\psi[a]$ is satisfied in M. Without loss of generality we assume that for every formula $\psi(x_1, \dots, x_n)$ there is a predicate $R(x_1, \dots, x_n)$ such that $(\forall x)(\psi(x_1, \dots, x_n)) \equiv R(x_1, \dots, x_n) \equiv T$ and that there are no function symbols in the language. Morley [2] explains why there is no loss of generality here. The language of T will be denoted by L(T). The predicates in L(T) will be $\{R_i : i < |T|\}$. T is complete unless stated otherwise. Usually x, y, z will be individual variables, $\bar{x}, \bar{y}, \bar{z}$ — finite sequences of variables, a, b, c will denote elements of models, and $\bar{a}, \bar{b}, \bar{c}$ will de-

note finite sequences of elements of models. It is implicitly assumed that different sequences of variables contain no common variables. $\langle \rangle$ will be the empty sequence. \bar{a}_i or $\bar{a}(i)$ will be the *i*'th element of the sequence \bar{a} . Instead of writing $(\forall n < \omega)$ ($\bar{a}_n \in A$) we shall write $\bar{a}_n \in A$ or $\bar{a} \in A$. A, B, C will denote substructures of T-models, and when we speak about a set A, or define A, we speak about its relations as well. That is we do not distinguish between the substructure A and the set A. By $A \subseteq M$ we mean that $A \subseteq |M|$, and the relations on A are the relations on M restricted to A. T(A) is the theory T together with all the true sentences $R[\bar{a}]$, $\bar{a} \in A$, and T(A) is a complete theory. When writing $R[\bar{a}]$ we assure implicitly that the length of the sequence \bar{a} is equal to the number of places in the predicate R.

We define p to be a type on A iff p is a set whose elements are of the form $\psi(\bar{x}, \bar{a})$, where $\bar{a} \in A$, and ψ is an arbitrary formula in L. q, r will also denote types. If for every ψ , $\bar{a} \in A \longrightarrow \psi(\bar{x}, \bar{a}) \in p$ or $\psi(\bar{a}, \bar{a}) \in p$, p is called a *complete type* on A. If A is not mentioned, then it is assumed A is the empty set. When we speak about a type we implicitly assume that $T(A) \cup p$ is a consistent set. We define $p \mid A = \{\psi(\bar{x}, \bar{a}) \in p : \bar{a} \in A\}$. If not otherwise assumed $\bar{x} = x$ in p.

 $S^T(A)$ is the set of complete types on A. As T is fixed we write S(A). If I is a set of predicates then $p \mid I = \{ \psi \in p : \psi = R(x, \bar{a}) \text{ or } \psi = \longrightarrow R(x, \bar{a}) \text{ and } R \in I \}$, $S_I(A) = \{ p \mid I : p \in S(A) \}$, $p \mid R = p \mid \{R\}$, and $S_R(A) = S_{\{R\}}(A)$. By our notations we can distinguish easily between $p \mid I$ and $p \mid A$. On S(A) ($S_I(A)$) a compact topology is defined by the sub-base which has the following sets as elements: for every $\phi = \psi(x, \bar{a})$, $V_{\phi} = \{p : \psi(x, \bar{a}) \in p\}$. M realizes a type p on |M|, if there is an element p of p such that for every p is a called p is called p and p is called p if it does not realize p. p is called p is called p if it does not realize p. p is called p if p is a called p is called p in p if it does not realize p in p is called p in p is called p in p in p in p if it does not realize p in p is called p in p in

 $\mu(\chi)$ is the smallest cardinal such that if T with $|T| = \chi$, has a model omitting a type p in every cardinal smaller than $\mu(\chi)$ and not smaller than |T|, then it has such a model in every cardinal $\geq |T|$. In Vaught [9] the following results are mentioned:

$$\mu(\chi) < \beth_{\gamma}$$
 where $\gamma = (2^{\chi})^+$; $\mu(\aleph_0) = \beth_{\omega_1}$; $\mu(\beth_{\delta}) = \beth(\beth_{\delta+1})$ when cf $\delta = \omega$.

T is categorical in λ if all models of T of cardinality λ are isomorphic. $pc(T_1, T)$ is the class of reducts of models of T_1 to L(T). (We assume implicitly that

 $T = T_1 \cap L(T)$.) $pc(T_1, T)$ is categorical in λ if all models in $pc(T_1, T)$ of cardinality λ are isomorphic.

2. On possible cardinalities of S(A)

DEFINITION 2.1:
$$K_T(\lambda) = \sup\{|S(A)|: |A| \leq \lambda\} = \inf\{\mu: |A| \leq \lambda \Rightarrow |S(A)| < \mu\}.$$

Notations: η, τ will denote ordinal sequences of zeroes and ones. For $0 \le i < l(\eta)$ η_i is the *i*'th element of the sequence, where $l(\eta)$ is the length of the sequence. $\psi^{\eta(i)}$ will denote ψ if $\eta(i) = 0$, and $-\psi$ if $\eta(i) = 1$. $\eta \mid \alpha$ is the sequence of the first α elements of η .

THEOREM 2.1. 1) If there exists A, $|A|^{|T|} = |A|$, |S(A)| > |A|. Then for every λ , $K_T(\lambda) \ge \inf\{(2^x)^+ : 2^x > \lambda\}$.

2) There exists A as mentioned in 1, iff there exists a predicate R such that: $\Gamma_R = \{(\exists x) (\Lambda_{0 \le i < l(\eta)} R(x, \tilde{y}^{\eta|i})^{\eta(i)}) : l(\eta) < \omega\} \cup T \text{ is consistent.}$

REMARKS. The same argument will show that if there exists an A such that $|A|^{|T|} < |S(A)|$, then Γ_R is consistent.

Proof. Let us assume that A satisfies $|A|^{|T|} = |A|$, |S(A)| > |A|. Then we shall show that there exists a consistent Γ_R as mintioned in 2, and that the consistency of Γ_R implies the conclusion of 1. This will prove the theorem.

Now for every R, we define $p_1 \sim p_2 \pmod{R}$ iff $p_1 \mid R = p_2 \mid R$. This is an equivalence relation on S(A), which divides it into $|S_R(A)|$ equivalence classes. Since, for every $p_1, p_2 \in S(A)$, $p_1 \neq p_2$, there is an R such that $P_1 \sim p_2 \pmod{R}$, $|S(A)| \leq |\prod_R S_R(A)| = \prod_R |S_R(A)|$. If for every R, $|S_R(A)| \leq |A|$, then $|S(A)| \leq |A|^{|T|} = |A|$, a contradiction. Hence, there esxits an R such that $|S_R(A)| > |A| \geq \aleph_0$. We shall prove that Γ_R is consistent.

For every \bar{a} such that $\bar{a} \in A$, $R(x, \bar{a})$ divides $S_R(A)$ into two sets: the types p such that $R(x, \bar{a}) \in p$, and the types p such that $A \in A$ such that

$$\left|S_{R}(A)\right| = \left|\bigcup_{\bar{a}} \left\{p \in S_{R}(A) : R(x, \bar{a})^{\tau(\bar{a})} \in p\right\} \cup \left\{p \in S_{R}(A) : \text{ for all } \bar{a}\right\}$$

$$R(x,\bar{a})^{\tau(\bar{a})} \notin p\} \Big| \leq \sum_{\bar{a}} \Big| \Big\{ p \in S_R(A) : R(x,\bar{a})^{\tau(\bar{a})} \in p \Big\} \Big| + 1 = \Big| A \Big|, \quad \text{a contradiction.}$$

So there exists $\bar{a} = \bar{a}^{\langle \cdot \rangle}$ such that $R(x, \bar{a}^{\langle \cdot \rangle})$ divides $S_R(A)$ into two sets of cardinality > |A|. For every one of them we can repeat the above discussion and

find. $\bar{a}^{\langle 0 \rangle}$, $\bar{a}^{\langle 1 \rangle}$ such that there exists > |A| types p with either $R(x, \bar{a}^{\langle 1 \rangle})$, $R(x, \bar{a}^{\langle 0 \rangle}) \in p$; $R(x, \bar{a}^{\langle 0 \rangle})$, $R(x, \bar{a}^{\langle 0 \rangle}) \in p$; $R(x, \bar{a}^{\langle 1 \rangle}) \in p$; or $R(x, \bar{a}^{\langle 1 \rangle})$, $R(x, \bar{a}^{\langle 1 \rangle}) \in p$. We can continue defining \bar{a}^n , and proving by it the consistency of Γ_R . And so we have shown one direction.

Let $\chi = \inf \{ \mu : 2^{\mu} > \lambda \}$. We define

$$\Gamma = \{R(\chi_n y^{\eta|\gamma})^{\eta(\gamma)} : l(\eta) = \chi, \gamma < \chi\} \cup T.$$

It is easy to see that if Γ is not consistent then Γ_R is not consistent. Let M be a model of Γ , and A_1 the set of elements which realize the variables $\{(\bar{y}^{\eta|\gamma})_n : l(\eta) = \chi, \gamma < \chi, \eta < l(\bar{y}^{\eta|\gamma})\}$. The cardinality of A_1 is $\leq \sum_{\gamma < \chi} 2^{|\gamma|} \leq \lambda$, and in M 2^{χ} different complete types on A_1 are realized. (The types realized by elements which realizes the variables χ_n , $l(\eta) = \chi$). So $|A_1| \leq \lambda$. $|S(A_1)| \geq 2^{\chi} > \lambda$, and so $K_T(\lambda) \geq (2^{\chi})^+ > \lambda^+$.

DEFINITION 2.2. If in T there is no predicate R such that Γ_R is consistent, T is called *stable*.

DEFINITION 2.3. If for every λ , $K_T(\lambda) \leq \lambda^+ + (2^{|T|})^+$ then T is called *super stable*.

THEOREM 2.2. 1) If T is stable and there exists A, $|A| \ge 2^{|T|}$ such that S(A)| > |A|, then for every λ , $K_T(\lambda) > \lambda^{x_0}$. So there exists arbitrarily large powers for which $K_T(\lambda) > \lambda^+ + (2^{|T|})^+$.

2) There exists A as mentioned in 1 iff there exists a sequence of ω predicates $\langle R^n : n < \omega \rangle$ such that

$$\begin{split} \Gamma\langle R^n: n\,\omega < \rangle &= \{R^m(x^f,\bar{y}^{g,h}) \equiv \longrightarrow R^m(x^{f'},\bar{y}^{g,h}) \colon \text{for all} \\ f &= \langle i_0,\cdots,i_{m-1},i_m,\cdots,i_l\cdots:l<\omega \rangle, f' = \langle i_0,\cdots,i_{m-1},i_m,\cdots',i_l,\cdots':l<\omega \rangle, \\ i'_m &\neq i_m, g = \langle i_0,\cdots,i_{m-1} \rangle, h = \{i_m,i'_m\} \text{ and} \\ i_l,i'_l &< \omega \text{ for all } l<\omega \} \end{split}$$

is consistent.

3) If T is super stable and there exists A with |S(A)| > |A|, |T| and if $\lambda > |A| + |T|$, $\lambda \le S(A)$ is regular then there exists $B \subset A$, |B| = |T| such that $|S(B)| \ge \lambda$. We can conclude that, for super stable T, if $K_T(\lambda) > \lambda^+ > |T|$ then $K_T(|T|) > |T|^+$.

Proof. The way we prove 1 and 2 will be similar to that of Theorem 2.1. First,

we shall prove from the assumption of 1 that there exists $\langle R^n : n < \omega \rangle$ such that $\Gamma \langle R^n : n < \omega \rangle$ is consistent, and then that if $\Gamma \langle R^n : n < \omega \rangle$ is consistent then for every λ there exists A, such that $|A| = \lambda$, $|S(A)| \ge \lambda^{\aleph_0}$. Then choosing such an A for $\lambda = \aleph(2^{|T|}, \omega)$, we close the circle.

Let A be as in the assumption of 1.

LEMMA 2.3. There exists R^0 , a predicate of L(T), such that the partition of S(A) by the equivalence relation (mod R^0) contains at least $|T|^+$ classes of cardinality > |A|.

Proof of the lemma. If $not - |S(A)| \le \sum_{R} |S_{R}(A)| + |T|^{|T|} = |A|$, a contradiction.

For every one of the $|T|^+$ classes there exists R_i that divides it in a similar manner. But there are only |T| predicates. So there exists R^1 such that there are $|T|^+$ classes (mod R^0) such that in each of their partitions by R^1 there are $|T|^+$ classes of cardinality > |A|. It is easy to see that we can continue to define R_n for $n < \omega$.

Now $\langle R^n : n < \omega \rangle$ is defined. By the construction just mentioned there exists for every $n \{ p(j; i_0, \dots, i_{m-1}) : j < |T|^+, i_l < |T|^+, m < n \}$ such that the following three conditions are satisfied:

 $p(j; i_0, \dots, i_{m-1}) \in S_R m(A);$ if $j \neq j'$ then $p(j; i_0, \dots, i_{m-1})$ and $p(j'; i_0, \dots, i_{m-1})$ are contradictory; and $p(i_1) \cup P(i_2; i_1) \cup p(i_3, i_1, i_2) \cup \dots \cup p(i_m; i_0, \dots, i_{m-1})$ is consistent.

From this it can be easily seen that $\Gamma \langle R^n : n < \omega \rangle$ is consistent. Now we shall prove that if $\Gamma \langle R^n : n < \omega \rangle$ is consistent, then for every λ there exists an A such that $|A| = \lambda$, $|S(A)| \ge \lambda^{\aleph_0}$. Let $\Gamma = T \cup \{R^m(x^f, \vec{y}^{g,h}) \equiv R^m(x^{f'}, \vec{y}^{g,h}) : \text{ for, all } m < \omega$, $f = \langle i_0, \dots, i_{m-1}, i_m, \dots, i_l, \dots : l < \omega \rangle$, $g = \langle i_0, \dots, i_m \rangle$, $h = \{i'_m, i_m\}$, and $f' = \langle i_0, \dots, i_{m-1}, i'_m, \dots, i'_l \dots : l < \omega \rangle$ such that $(\forall j < \omega)$ $(i_j < \lambda \Lambda i'j < \lambda)\}$.

If Γ is inconsistent, then a finite subset of Γ is inconsistent and so $\Gamma < R^n : n < \omega \rangle$ is inconsistent, a contradiction. Therefore Γ has a model. Let A be the set of elements realizing the variables appearing in $\bar{y}^{g,h}$. Then elements realizing different variables from $\{x^f: f = \langle i_0, \cdots, i_l, \cdots : l < \omega \rangle, i_l < \lambda\}$ realizes different types on A. So $|A| \leq \sum_{m < \omega} \lambda^m = \lambda$, $|S(A)| \geq \lambda^{\aleph_0}$.

Now it remains to prove part 3. We can try again to build the construction that appears in the beginning of the proof replacing "more than |A|" by "at least λ ". As that attempt must fail by our assumption, we get a set S of $\geq \lambda$ types in S(A). such that for every R there are no more than |T| equivalence classes of power $\geq \lambda$,

 $\left\{ S_i(R) : i < j_R \leq \mid T \mid \right\}. \text{ Now } \left| S - \bigcup_i S_i(R) \right| < \lambda \text{ and } \left| S - \bigcap_R \bigcup_i S_i(R) \right|$ $\leq \sum_R \left| S - \bigcup_i S_i(R) \right| < \lambda \text{ and this implies that } \left| \bigcap_R \bigcup_i S_i(R) \right| \geq \lambda > \left| A \right|.$ If $p_1, p_2 \in \bigcap_R \bigcup_i S_i(R), p_1 \neq p_2$ there is an R such that $p_1 \mid R \neq p_2 \mid R$; but $p_1 \mid R$ is one of $\left| T \right|$ elements of $\left\{ p \mid R : p \in \bigcup_i S_i(R) \right\}$ (by the definition of $S_i(R)$), and so there is $A(R) \subset A$, $\left| A(R) \right| = \left| T \right|$ such that for every $p_1, p_2 \in \bigcap_R \bigcup_i S_i(R)$ if $p_{1R} \mid \neq p_2 \mid R$ then $p_1 \mid A(R) \neq p_2 \mid A(R)$. It follows that $\left| S(\bigcup_R A(R) \right| \geq \mid \bigcap_R \bigcup_i S_i(R) \geq \lambda$, and $\left| \bigcup_R A(R) \right| \leq \mid T \mid$.

REMARK. By a more refined proof we can replace $\Gamma \langle R^n : n < \omega \rangle$ by the more elegant set

$$\Gamma'\langle R^n : n < \omega \rangle = T \bigcup \{ (\exists x) \bigwedge_{j=0}^m \left[R^j(x, \bar{y}^g) \bigwedge_{h=0}^{ij-1} \cdots R^j(x, \bar{y}^f) \right] : m < \omega,$$

$$g = \langle i_0, \dots, i_j \rangle, f = \langle i_0, \dots, i_{j-1}, h \rangle, i_0, \dots, i_m < \omega \}$$

DEFINITION 2.4. We shall define $S_I^{\alpha}(A)$ and $TR_I^{\alpha}(A)$ by induction on α , where I is a set of predicates in L(T). $S_I^0(A) = S_I(A)$. $TR_I^{\alpha}(A)$ will be the set of types in $S_I^{\alpha}(A)$, which have, in every extension B of A, at most one extension which is an element of $S_I^{\alpha}(B)$. $S_I^{\alpha}(A) = S_I(A) - \bigcup_{i < \alpha} TR_I^i(A)$.

REMARK. An analogous definition appears in Morley [1], 2.2 and footnote 13.

THEOREM 2.4. If R is a predicate of L(T), Γ_R is consistent iff $S_R^{\alpha}(A) \neq 0$ for every α and A. If for some α and A $S_R^{\alpha}(A) = 0$, then there exists $\beta < \omega_1$ such that for every A, $S_R^{\beta}(A) = 0$.

Proof. As in Morley [1], 2.7, 2.8.

REMARK. In fact, $\beta < \omega$.

DEFINITION 2.5. 1) If Γ_R is not consistent, then to every type $p \in S(A)$, we define Rank (R, p) as the first α such that $p \mid R \in TR_R^{\alpha}(A)$.

2) If T is stable then Rank
$$(p) = \langle \operatorname{Rank}(R_i, p) : i < | T | \rangle$$
.

LEMMA 2.5. It is possible to define a lexicographic order on Rank(p), such that there is no monotonically decreasing sequence of type $|T|^+$.

Proof. Immediate.

THEOREM 2.6. 1) If $B \subset A$, and $p \in S(A)$, then $\operatorname{Rank}(R, p) \leq \operatorname{Rank}(R, p) | B$ and $\operatorname{Rank}(p) \leq \operatorname{Rank}(p|B)$, and there is no more than one extension q of $p \mid B$, $q \in S(A)$, such that $\operatorname{Rank}(q) = \operatorname{Rank}(p|B)$.

- 2) For all A, and $p \in S(A)$, and for every R, there exists a finite set $B \subset A$, such that $\operatorname{Rank}(R, p) = \operatorname{Rank}(R, p \mid B)$.
- **Proof.** See Morley [2] 2.4, 2.6. Notice the difference in terminology. (Rank here is rank and degree there.)

3. On some properties of stable theories.

THEOREM. 3,1. If M is a model of a stable theory T, $|T| < \lambda = |A| < ||M||$, $K_T(\lambda) = \lambda^+$ and A a substructure of M, then there exists a set Y in M, $|Y| = \lambda^+$, which is indiscernible on A (that is, for all y_1, \dots, y_h ; $z_1, \dots, z_n \in Y$. $a_1, \dots, a_m \in A$, $M \models R(y_1, \dots, y_n, a_1, \dots, a_m) \equiv R(z_1, \dots, z_n, a_1, \dots, a_m)$ if for every $i \neq j$, $y_i \neq y_j$ and $z_i \neq z_j$.

- REMARK 1. A similar theorem, for totally transcendental theories appears in Morley [2] 4.6. Rowbottom has a weaker unpublished theorem.
- REMARK 2. In fact we can prove more: in every $B \subset M$, $|B| > \lambda$, and for every regular $\chi \leq |B|$, $\chi > \lambda$, there is such a Y, provided $|B| < \chi \Rightarrow |\{p \in S(A): p \text{ is realized in } M\}| < \chi$.
- **Proof.** In S(A) there are λ types, and so at least one of them, p, is realized at least $|A|^+$ times. Let the set of elements of M realizing p be B.
- LEMMA 3.2. There exists A_1 , $|A_1| = \lambda$ $A \subset A_1 \subset M$, and $p_1 \in S(A_1)$ $p_1 \supset p$, such that, if $M \supset B_1 \supset A_1$, $|B_1| = \lambda$, p_1 has one and only one extension of the same rank in $S(B_1)$ and the extension is realized $\geq \lambda^+$ times in M.
- **Proof. of** 3.2. Let us assume the lemma is not correct. We shall define by induction C_i which fulfills the following conditions:
- 1) $C_i = \{ \langle A(k,j), p(k,j) \rangle : j; k \leq i \}$ where $p(i,j) \in S(A(i,j)), A(i,j) \supset A, A(i,j) = \lambda.$
- 2) If $p(i,j) \subseteq p(i',j')$ then i < i' and there exists p(i+1,j'') such that $p(i,j) \subseteq p(i+1,j'') \subseteq p(i',j')$.
- 3) If $p(i,j) \subseteq p(i+1,j')$ then $\operatorname{Rank}(p(i,j)) < \operatorname{Rank}(p(i+1,j'))$ or $|B(i,j)| > \lambda \ge |B(i+1,j')|$, where B(i,j) is the set of elements of M realizing p(i,j).
- 4) For every $i,j,i',j',\ p(i,j)\subset p(i',j')$ or $p(i,j)\supset p(i',j')$ or they are contradictory (that is, $T\cup p(i,j)\cup p(i',j')$ is inconsistent);
 - 5) $C_i \subset C_j$ for i < j.

We shall not prove the conditions explicitly as they are obvious from the construction.

Let
$$C_0 = \{\langle A, p \rangle\} = \{\langle A(0,0), p(0,0) \rangle\}.$$

Vol. 7, 1969

Let us define C_{i+1} . If $|B(i,j)| > \lambda$ then by our assumption there exists $A_1 \subset M$, $A(ij) \subset A_1$, $|A_1| = \lambda$ such that every extension of p(i,j) to A_1 has a smaller rank or is realized at most λ times. Then we add to $C_i \langle A(i+1,k), p(i+1,k) \rangle$ (where $A(i+1,k) = A_1$) for every extension of p(i,j), p(i+1,k), which belongs to S(A(i+1,k)) and is realized in M. Their number is $\leq \lambda$ as $|A_1| = \lambda$ implies $|S(A_1)| \leq \lambda$. We do so to every $\langle A(i,j), p(i,j) \rangle \in C_i$, and we get C_{i+1} . (We have enough indices so that there will be no confusion.) It is easily seen that $|C_{i+1}| \leq |C_i| + \lambda |C_i|$, and for every j, $|A(i+1,j)| \leq |A(i,j')| + \lambda \leq \lambda$ for some j'. Now we define C_δ . Let $\langle A^1, p^1 \rangle < \langle A^2, p^2 \rangle$ if $A^1 \subset A^2$ and $p^1 \subset p^2$. I $\langle A^i, p^i \rangle i < j$ is an increasing sequence, then $\bigcup_{i < \delta} \langle A^i, p^i \rangle = \langle \bigcup_{i < j} A^i, \bigcup_{i < j} p^i \rangle$. The elements of C_δ will be the elements of $\bigcup_{i < \delta} C_i$, and unions of increasing sequences in $\bigcup_{i < \delta} C_i$, $\langle A^1, p^1 \rangle$, such that p^1 is realized in M.

It will now be proved that $C_{|T|^+} = C_{|T|^++1} = C_{|T|^++2} = \cdots$. It is sufficient to show that $\bigcup_i \{C_i : i < |T|^+\} = C_{|T|^+}$. That comes from the construction, for if it is not correct, there is an increasing sequence $\langle\langle A^i, p^i \rangle : i < |T|^+ \rangle$. Then Rank (p_i) is decreasing sequence, and by Lemma 2.4 that sequence cannot be strictly decreasing, so there exists an i such that Rank $(p_i) = \text{Rank}(p_{i+2}) = \cdots$. By condition $3 \mid \{a \in M: \text{ a realizes } p_{i+1}\} \mid \leq \lambda$ (as Rank $(p_i) = \text{Rank}(p_{i+1})$ and $p_i \neq p_{i+1}$) and similarly $\mid \{a \in M: \text{ a realizes } p_{i+1}\} \mid > \lambda$ (as Rank $(p_{i+1}) = \text{Rank}(p_{i+2})$ and $(p_{i+1}) = \text{Rank}(p_{i+2})$), a contradiction.

We shall now show that $|C_i| \leq \lambda$ and $|A(i,j)| \leq \lambda$ for $i \leq |T|^+$. If not, let k be the first ordinal that contradicts our assertion. If k = i + 1 then $|C_k| \leq |C_i| + \lambda |C_i| \leq \lambda$ and for every j, for some $j' |A(k,j)| \leq |A(i,j')| + \lambda = \lambda$ (as remarked in the definition of C_{i+1}), so that k has to be a limit ordinal, and $k \leq |T|^+$. Let $A^i = \bigcup \{A(l,j):j;l \leq i\}$. Now it can be seen easily that $|A^i| \leq |C_i| \cdot \max_j |A(i,j)| \leq \lambda$ for i < k, and from that, and the construction, it can be easily seen that $|A^k| \leq \lambda$, and therefore $|S(A_k)| = \lambda$. Now the $\{B(k,j):j\}$ are disjoint sets, and every one of them is the union of sets realizing some complete types on A_k , and by the construction $B(k,j) \neq 0$, and so the number of B(k,j) is no more than λ . Thus $|C_k - \bigcup_{i < k} C_i| \leq \lambda$. We can conclude that $|C_k| \leq |C_k - \bigcup_{i < k} C_i| + \sum_{i < k} |C_i| \leq \lambda + k$ $\lambda = \lambda$, a contradiction; and so $|C_{|T|+1}| \leq \lambda$, $|A^{|T|+1}| \leq \lambda$.

For every b with $b \in B(0,0)$, the set of $\langle A(i,j), p(i,j) \rangle$ in $C_{|T|}$ + such that $b \in B(i,j)$ is an increasing sequence in $C_{|T|}$ +. The union of the sequence is also in $C_{|T|}$ +, and so there is a last such element in $C_{|T|}$ +, $\langle A^b, p^b \rangle$. The set of elements of M realizing

 p^b will be denoted by B^b . Now if there is an element of $C_{|T|+}$ greater than $\langle A^b, p^b \rangle$, then by the construction of C_i there is such an element $\langle A', p' \rangle$ such that b realizes p', in contradiction to the definition of $\langle A^b, p^b \rangle$. Therefore $|B^b| \leq \lambda$. Now $B = B(0,0) \subset \bigcup \{B_b : b \in B\} = \bigcup \{B(i, j) : |B(i, j)| \leq \lambda; j; i < |T|^+\} \lambda < |B| \leq |C_{|T|+}| \cdot \lambda = \lambda$ —contradiction.

So we have proved Lemma 3.2.

It follows that without loss of generality we can assume that for every C, such that $A \subset C \subset M$ and $|C| = \lambda$, p has one and only one extension in S(C) which is of the same rank, and that extension is realized at least λ^+ times. Let the set of elements of M realizing p be B.

We define by induction the sequence $\{y_i : i < \lambda^+\}$, y_0 is an arbitrary element of B. If we define y_i for every $i < j < \lambda^+$, then $y_j = y(j)$ will be an element of M that realizes the only extension of p to a type q in $S(A \bigcup \{y_i : i < j\})$ such that $\operatorname{Rank}(p) = \operatorname{Rank}(q)$. By the definitions of B and p, there is such a y_i .

LEMMA 3.3. If $i_1 < i_2 < \cdots < i_h < \lambda^+$, $j_1 < \cdots < j_n < \lambda^+$ then for every predicate R in T and every \bar{a} , $\bar{a} \in A$,

$$M \models R[y(i_1), \dots, y(i_n), \bar{a}] \equiv R[y(j_1), \dots, y(j_n), \bar{a}].$$

Proof of Lemma 3.3. Without loss of generality $i_k = k$.

Now, in the construction of the y_i , in every stage in $S(A \bigcup \{y_i : i < j\})$ there is only one extension p_j of p such that $\operatorname{Rank}(p_1) = \operatorname{Rank}(p)$, so the type which y_j realizes on $A \bigcup \{y_i : i < j\}$ is independent of the choice of y_j . If $\{z_i : i < j\}$ satisfies: for every i, z_i realizes a type q_i on $A \bigcup \{z_k : k < i\}$ such that $q_i \supset p$, $\operatorname{Rank}(q_i) = \operatorname{Rank}(p)$, then it can be easily proved by induction that $\langle y_{i_1}, \dots, y_{i_n} \rangle$ satisfies the same type on A as $\langle z_{i_1}, \dots, z_{i_n} \rangle$. Now, if we choose y_{j_1} as the first y, and y_{j_2} as the second, etc., they will satisfy the same formulaes as y_1, \dots, y_n . It remains to prove that after choosing y_{j_1}, \dots, y_{j_k} as the first k y's we can choose $y_{j_{k+1}}$ as the next y. That is, perhaps $y_{j_{k+1}}$ realized a type p on $A \bigcup \{y_{j_1}, \dots, y_{j_k}\}$, such that $\operatorname{Rank}(\bar{p}) < \operatorname{Rank}(p)$. But if q is the type of $y_{j_{k+1}}$ on $A \bigcup \{y_1, \dots, y_l\}$ $(l = j_{k+1} - 1)$ then $\operatorname{Rank}(p) = \operatorname{Rank}(q) \le \operatorname{Rank}(\bar{p}) < \operatorname{Rank}(p)$, contradiction. So Lemma 3.3 is proved.

LEMMA 3.4. Y is indiscernible on A.

Proof. The proof is the same as in Morley [2] 4.6, since in every cardinal χ there is an ordered set that has more than χ Dedekind cuts.

So Theorem 3.1 is proved.

DEFINITION 3.1. Let K be a class of models, A a substructure of such models, $M \in K$ is called K-prime on A, if for every $M_1 \supset A$, $M_1 \in K$, there exists an isomorphism from M into M_1 that is the identity on A.

THEOREM 3.5. If T is a stable theory, and $|A| \leq \sum_{\chi < \lambda} 2^{\chi} \Rightarrow |S(A)| < 2^{\lambda}$, or $\lambda \geq |T|^+$, then among the λ -saturated models of T, there is a prime model on every substructure A of a model of T.

REMARK. An analogous theorem appears in Morley [2] 4.3.

DEFINITION 3.2. $p \in S(A)$ is called λ -isolated if there is a type $p_1 \subset p$, $|p_1| < \lambda$, such that p is the only element in S(A) that includes p_1 .

Proof of 3.5. In order that the model we will build on A be λ -saturated, we should realize every type of cardinality $<\lambda$, and in order that it be a prime we should realize only types which are realized in every λ -saturated model including A. So it is sufficient to show that if p is type on a set A, $|p| < \lambda$, then there exists an extension p_1 of p, $p_1 \in S(A)$, and p_1 is λ -isolated. For if it is right, we can add an element to A for every λ -isolated type. And if we continue adding such elements for every type p, $|p| < \lambda$ (by adding an element which realizes a λ -isolated complete type containing it) we shall get the wanted prime model.

Now let $\lambda \ge |T|^+$ and $|p| < \lambda$ where p is a type on A. Among the elements of S(A) containing p, there is a q with minimal $\operatorname{Rank}(R_0,q)$, so there are a finite number of formulaes which define the type completely with regard to R_0 (among the extension of p). We adjoin these formulaes to p, and continue with R_1, R_2, \cdots . Because of the compactness theorem, this operation does not lead to a contradiction at the limit. So after |T| steps we get the required type — a type of power $\le |p| + |T| < \lambda$, which has only one extension in S(A).

It remains to deal with the case $|A| \leq \sum_{\chi < \lambda} 2^{\chi} \Rightarrow |S(A)| < 2^{\lambda}$. Let p be a type on A, $|p| < \lambda$, which contradicts our conjecture. Let $p = p_{\langle \rangle}$. If $p_{\langle \rangle}$ has more than one extension to a type in S(A), then there is a formula $R(x, \bar{a})$, such that $p_{\langle 0 \rangle} = p \bigcup \{R(x, \bar{a})\}$, and $p_{\langle 1 \rangle} = p \bigcup \{-R(x, \bar{a})\}$ are consistent. We continue with $p_{\langle 1 \rangle}$ and $p_{\langle 0 \rangle}$ as with $p_{\langle 1 \rangle}$ and can define p_{η} for every sequence η of ones and zeroes, $l(\eta) \leq \lambda$, $|p_{\eta}| \leq \lambda$, such that:

1) if η_1 is not is not an initial segment of η_2 or conversely, then $p_{\eta_1} \cup p_{\eta_2}$ is not consistent;

- 2) if η_1 is an initial segment of η_2 , then $p_{\eta_1} \subset p_{\eta_2}$; and
- 3) if $l(\eta)$ is a limit ordinal then $p_{\eta} = \bigcup_{i < l(\eta)} p_{\eta|i}$. Then $\{p_{\eta} : l(\eta) \le \lambda\}$ are 2^{λ} contradictory types on a set of cardinality $\le \lambda + \sum_{\chi < \lambda} 2^{\chi} = \sum_{\lambda < \lambda} 2^{\chi} < 2^{\lambda}$, a contradiction.

4. On categorical elementary and pseudo elementary classes.

THEOREM 4.1. Let M be a model of a not necessarily complete theory T, Q predicate in L(T), p a type. Let $(2^{|T|})^+ = \gamma$.

- 1) If M omits the type p, and $\Im(|Q(M)|, \gamma) \le ||M||$, then in every cardinal $\ge |T|$, there is a model M_1 of T which omits p and such that $|Q(M_1)| \le |T|$.
- 2) If M omits the type p, and $\beth (|Q(M)|, \gamma) \leq ||M||, |Q(M)| \geq \beth_{\gamma}$ then for all cardinals $\chi \geq \lambda \geq |T|$, there is a model M_1 of T which omits p and such that $|Q(M_1)| = \lambda$, $||M_1||_1 = \chi$.

Proof. The proof is by the methods of Morley [3] and is not given here. (Also see Vaught [9].)

REMARKS. The theorem can be slightly improved as don by Morley [2], in analogous theorems.

THEOREM 4.2. If $p \in (T_1, T)$ is categorical in a cardinal $\lambda > |T_1|$, then for every χ , $|T_1| \leq \chi < \lambda$, $K_T(\chi) = \chi^+$, and so T is stable.

Proof. By Morley [1], 3.7 (the proof for the non-denumerable case in the same) there exists a model M of T_1 , $||M|| = \lambda$, such that for every $A \subset M$, at most $|A| + |T_1|$ types on A are realized in M, and it follows from this that the same holds for the reduct of M to L(T). If $K_T(\chi) = \chi^+$, $|T_1| \le \chi < \lambda$, there is a reduct to L(T) of a model of T_1 of cardinality λ , for which there exists $A \subset M$ satisfying $|A| = \chi$, and $> \chi$ types of S(A) are realized on A in the model. This contradicts the categoricity.

THEOREM 4.3. If $p \in (T_1, T)$ is not categorical in $\lambda_1 = \mathbb{I}(\gamma \cdot \alpha) > |T_1|$ (where $\gamma = (2^{|T|})^+$, $\alpha > 0$), then it has a non- $|T|^+$ -saturated model in every cardinality. This is also true if we replace the assumption by: " $p \in T_1$, T) has a non-saturated model in λ_1 ".

Proof. As any two saturated models of the same cardinality > 1 are isomorphic (see Morley and Vaught [1]), the second assumption follows from the first.

Let M be a non-saturated model such that $||M|| = \lambda_1$ and M is the reduct to L(T) of M_1 . Then there exists $A \subset M \mid A \mid < ||M||$, and $p \in S(A)$, such that p is omitted in M. When we adjoin to M_1 the relations Q(M) = A and to every predicate R of $L(T) \psi_R(M_2) = \{\bar{a}: R(x, \bar{a}) \in p\}$, we get a model M_2 . Now $||Q(M_2)|| < ||M_2||$ and M_2 omits $p_1 = \{(\forall \bar{y}) (\land_i Q(\bar{y}_i) \to R(x, \bar{y}) \equiv \psi_R(\bar{y})): R$ a predicate in L(T).

By 4.1 in every cardinality there is a model M_3 of the theory of M_2 such that $|Q(M_3)| \le |T_1|$, and M_3 omits the type $\{R(x, \bar{a}) : \bar{a}_i \in Q(M_3), M_3 \models \psi_R[a], R$ a predicate of $L(T)\}$ which is a type on a set of cardinality $\le |T_1|$ (its consistency follows from the theory of M_2), and this proves the theorem.

LEMMA 4.4. 1) If $|T_1| \leq \lambda$, λ is regular, and $|A| < \lambda \Rightarrow |S^T(A)| \leq \lambda$, then $p \in T_1, T$) has a saturated model in λ .

2) If $|T_1| \le \lambda$, $\mu \le \lambda$, μ is regular and $|A| \le \lambda \Rightarrow |S^T(A)| \le \lambda$, then $p \subset (T_2, T)$ has a λ -saturated model in λ .

Proof. Since the proofs are essentially similar, we prove only 1). Let $T_1 = \bigcup_{i < |T_1|} T_1^i$ where $T_1^i \subset T_1^j$ if i < j and $T_1^i = T_1$ for $i \ge |T_1|$ and $|T_1^i| < \lambda$. By the conditions in 1 we can easily define a sequence $\langle M^i : i \le \lambda \rangle$ such that: $|i| \le |M^i| < \lambda$; M^i as a model of T_1^i ; if i < j then the reduct of M^j to $L(T_1^i)$ is an elementary extension of M^i ; the L(T)-types on M^i are $\langle p_j^i : j < j_0 \le \lambda \rangle$ and p_j^i is realized in M^j ; $M^\delta = \bigcup_{i < \delta} M^i$. M_δ is the required model.

COROLLARY. 1) If T is not stable then $p \subset (T_1, T)$ has a saturated model in a regular cardinal $\lambda \ge |T_1|$ iff $\chi < \lambda = 2^{\chi} \le \lambda$.

Proof. Suppose there exists $\chi_1 < \lambda < 2^{\chi_1}$. Let $\chi = \inf \{ \chi : 2^{\chi} > \lambda \}$. As T is not stable, by Theorem 2.1, there exists A, $|A| \leq \sum_{\mu < \chi} 2^{\mu} \leq \lambda$ such that there exists $2^{\chi} > \lambda$ contradicting types of power $\chi < \lambda$ on A. If T has a saturated model M of power λ , then there is $A' \subset M$, with A' isomorphic to A. Thus in M more than ||M|| contradicting types have to be realized, a contradiction. The opposite direction in trivial by 4.4.1, since always, $S(A) \leq 2^{|A||+|T||}$.

THEOREM 4.5. 1) If $|T_1| = \aleph_{\alpha}$ and T is not stable then the number of isomorphism types of $p \subset (T_1, T)$ in \aleph_{β} is at least $|\beta - \alpha|$.

2) If $|T_1| = \aleph_{\alpha}$ and T is not super stable, then the number of isomrophism types of $p \subset T_1, (T)$ in \aleph_{β} is at least $|(\beta - \alpha)/\omega|$.

- 3) If $p \in (T_1, T)$ is categorical in a cardinal $> |T_1|$, different from $\inf \{\chi : \chi \ge T, \chi^{\aleph_0} > \chi + |T| \}$, then a) T is superstable, b) $K_T(\lambda) = \lambda^+$ for $\lambda \ge |T|$. c) $p \in (T_1, T)$ is categorical in a cardinal $> |T_1|$ iff all models in it are saturated, and d) $p \in (T_1, T)$ is categorical in $\mathfrak{I}(\gamma \cdot \alpha)$ for $\gamma = (2^{|T|})^+$, $\alpha > 0$, $\mathfrak{I}(\gamma, \alpha) > |T_1|$.
- **Proof.** 1, 2) If $K_T(\lambda) > \lambda^+$, then for every $\chi \ge \lambda^+$ there is a model M in $p \subset (T_1, T)$ such that there exists a set A with more than |A| types realized on it in M, $|A| = \lambda$, and there is no such set of greater cardinality. (The existence is proved as in 4.2.)
- 3) By 4.2, for every χ with $|T_1| \leq \chi < \lambda$, $K_T(\chi) = \chi^+$. So, if λ is regular, then there is a model in $p \subset (T_1, T)$ of cardinality λ which is saturated by Lemma 4.1.2. If λ is singular, then $\lambda > \chi = \inf\{\chi : \chi \geq |T|, \chi^{\aleph_0} > \chi\}$, and so $K_T(\chi) = \chi^+$, and as $\chi^{\aleph_0} > \chi$, this implies that T is super stable. As $K_T(|T_1|) = |T_1|^+$, by 2.2 $K_T(\lambda) = \lambda^+$, and so by Lemma 4.4.1 $p \subset (T_1, T)$ has a $|T_1|^+$ -saturated model in λ . Therefore by 4.3, $p \subset (T_1, T)$ is categorical in $\Sigma (\gamma \cdot \alpha) (\gamma = (2^{|T|})^+, \alpha > 0)$, and so $K_T(\mu) = \mu^+$ for every $\mu \geq |T_1|$. That implies by Lemma 4.4, that in every power $\mu > |T_1|$ and regular $\chi \leq \mu$, there exists a model of power μ in $p \subset (T_1, T)$, which is χ -saturated. So if $p \subset (T_1, T)$ is categorical in μ , its only model in μ is saturated. It is clear that if $p \subset (T_1, T)$ has only saturated models in $\mu > |T|$, then it is categorical in μ .

REMARK. In 4.3 and 4.5.3 we apply a two-cardinal theorem to a categoricity theorem. In fact, a more general connection exists among the following conditions on χ , λ , μ ($\chi \le \lambda$, μ):

- 1) If $|T| < \chi$ and T has a model which omits a type p and such that $||M|| = \lambda$, $|Q(M)| < \lambda$, then T has a model M' which omits p such that $\mu = ||M'|| > |Q(M')|$.
 - 2) If $|T_1| < \chi$ and $p \subset (T_1, T)$ is categorical in μ , then it is categorical in λ .
- 3) If $|T_1| < \chi$ and every model of power μ in $p \subset (T_1, T)$ is homogeneous, then the same holds for λ .
- 1 implies 3. (Keisler proves this in [1].) 1 implies 2 if $\mu \neq \inf \{\lambda_1 : \lambda_1^+ \geq \chi, \lambda_1^{\aleph_0} \geq \lambda_1 \}$ or if $\chi_1 < \chi \Rightarrow \aleph(\chi_1, \omega) < \chi$. 3 implies 1 if χ is not greater than the first measurable cardinal, and there is no weakly compact χ_1 such that $\chi_1 < \chi \leq (2^{\chi_1})^+$. 2 implies 1 if in addition $\mu \neq \inf \{\lambda_1 : \lambda_1^+ \geq \chi, \lambda_1^{\aleph_0} \geq \lambda \}$ or $\chi_1 < \chi \Rightarrow \aleph(\chi_1, \omega) < \chi$.

THEOREM 4.6. If T is categorical in a power λ , $\lambda > |T|$, $\lambda \neq \inf\{\chi: \chi^{\aleph_0} > \chi + |T|\}$, then there exists a cardinal λ_0 , such that T is categorical in every cardinal

 $\geq \lambda_0$, and is not categorical in any power χ , $|T| < \chi < \lambda_0$. Furthermore λ_0 is such that $\lambda_0 < \mu(|T|) < \Im((2^{|T|})^+)$.

Proof. If for every $\chi < \mu(|T|)$ T has a model M which is not $|T|^+$ -saturated, $||M|| \ge \chi$, then it has such a model in every cardinal > |T| a contradiction by 4.4. (For if $A \subset M$, $|A| \leq |T|$, $p \in S(A)$, and p is omitted, we adjoin to M the constants $\{c_i: i < |T|\}$ a names for the element of A, and relations as in 4.3, and the result follows by the definition of $\mu(|T|)$.) Now if M is a $|T|^+$ -saturated but not saturated model of T, then there exists $A \subset M$, |A| < ||M||, |A| > |T|, $p \in S(A)$, such that p is omitted. As $K_T(|A|) = |A|^+$ and $||M|| > |A| > |T| \Rightarrow ||M|| > |T|^+$, there exists an indiscernible set Y over A, $|Y| = |A|^+$, by Theorem 3.1. If $Y = \{y_i : i < |A|^+\}, \text{ let } B = A \cup \{y_i : i < \chi\}\}, \text{ where } \{y_i : i < \chi\} \text{ is indiscernible}$ over A, and M_1 be a prime model over B among the $|T|^+$ -saturated models, which exists by 3.2. Now it will be proved that p is not realized in M_1 . In the construction of M_1 , we adjoined to B the elements of $\{c_i : i < |B|\}$ one after another, such that c_i realizes a $|T|^+$ -isolated type on $B \cup \{c_i : i < ij\}$, defined by p_j , $|p_i| < |T|^+$. If c_k realizes p, let $B_1 = \{c_k\}$, and $B_{i+1} = B_i \cup \{b : b \text{ is mentioned } \}$ in p_i , and $c_i \in B_i$. Now $|\bigcup_i B_i| \le |T|$, and it can be easily seen that in a prime model over $A \cup (\{y_i : i < \chi\} \cap \bigcup_{i < \omega} B_i)$, p is realized, and so it is realized in M a contradiction, so p is not realized in M_1 . As we can take $\chi = \sum_{\gamma} (2^{r|T|}) + |\gamma, \chi > |A|$, it follows that T has a non-saturated model in χ , in contradiction to 4.3, 4.4.3. So every $|T|^+$ -saturated model is saturated. If T is not categorical in λ_1 , then it has a non- $|T|^+$ -saturated model of cardinality λ_1 , and so T is not categorical in any cardinal λ_2 . $|T| < \lambda_2 \le \lambda_1$. As we have shown that there exits a cardinal $\lambda < \mu(|T|)$ in which every model of T is $|T|^+$ -saturated, the theorem follows.

REFERENCES

- 1. H. J. Keisler, Some model theoretic results for w-logic, Israel J. of Math. 4 (1966), 249-261.
- 2. M. Morley, Categoricity in power, Trans. Amer. Math. Soc. 114 (1965), 514-538.
- 3. M. Morley, *Omitting classes of elements, The theory of models*, Proceedings of the 1964 International Symp., North-Holland Publishing Company (1965), 265-274.
- 4. M. Morley and R. L. Vaught, *Homogeneous universal models*, Mathematica Scandinavia 11 (1962), 37-57.
- 5. J. P. Ressayre, Sur les théories du premier ordre catégorique en un cardinal, mimeograph, Paris.
- 6. F. Rowbottom, *The Lo's conjecture for uncountable theories*, Notices of the Amer. Math. Soc. 11 (1964), 248.

- 7. S. Shelah, Classes with homogeneous models only, Notices of the Amer. Math. Soc. 15 (1968), 803.
 - 8. S. Shelah, Categoricity in power, Notices of the Amer. Math. Soc. 15 (1968), 903.
- 9. R. L. Vaught, The Löwenheim-Skolem theorem, Logic Methodology and Philosophy of Science, Proceedings of the 1964 International Congress, North-Holland Publishing Company, Amsterdam (1965), 81-89.

THE HEBREW UNIVERSITY OF JERUSALEM